Information Science and Engineering Lab

We perform teaching and research in machine learning strategies for the pattern analysis of various kinds of data. This comprises statistical models for clustering, graphical models for network inference and algorithmic methods to efficiently find these structures in the data.

Contact Info
CAB F 61.1
Universitaetstrasse 6,
8092 Zurich
Schweiz

+41 44 632 64 96

Follow Us

Information Science and Engineering Lab

We perform teaching and research in machine learning strategies for the pattern analysis of various kinds of data. This comprises statistical models for clustering, graphical models for network inference and algorithmic methods to efficiently find these structures in the data.

Contact Info
CAB F 61.1
Universitaetstrasse 6,
8092 Zurich
Schweiz

+41 44 632 64 96

Follow Us

Journal Article - page 5

Multi-assignment clustering for Boolean data

Mario Frank, Andreas P. Streich, David Basin, Joachim M. Buhmann,

Journal of Machine Learning Research, 13

Research Collection

Learning Dictionaries With Bounded Self-Coherence

C.D. Sigg, T. Dikk, Joachim M. Buhmann,

IEEE Signal Processing Letters, 19

Research Collection

Generic comparison of protein inference engines

Manfred Claassen, Lukas Reiter, Michael O. Hengartner, Joachim M. Buhmann, Ruedi Aebersold,

Molecular & Cellular Proteomics, 11

Research Collection

Decoding the perception of pain from fMRI using multivariate pattern analysis

Kay H Brodersen, Katja Wiech, Ekaterina I. Lomakina, Chia-shu Lin, Joachim M. Buhmann, Ulrike Bingel, Markus Ploner, Klaas Stephan, Irene Tracey,

NeuroImage, 63

Research Collection

Bayesian Mixed-Effects Inference on Classification Performance in Hierarchical Data Sets

Kay H Brodersen, Christoph Mathys, Justin Chumbley, Jean Daunizeau, Cheng S. Ong, Joachim M. Buhmann, Klaas Stephan,

Journal of Machine Learning Research, 13

Research Collection

Bayesian Mixed-Effects Inference on Classification Performance in Hierarchical Data Sets-2012

Kay H Brodersen, Christoph Mathys, Justin R. Chumbley, Jean Daunizeau, Cheng Soon Ong, Joachim M. Buhmann, Klaas Stephan,

Journal of Machine Learning Research, 13

Research Collection

A high-throughput metabolomics method to predict high concentration cytotoxicity of drugs from low concentration profiles

Stéphanie Heux, Thomas J. Fuchs, Joachim M. Buhmann, Nicola Zamboni, Uwe Sauer,

Metabolomics, 8

DOI: 10.3929/ethz-b-000048939      Research Collection

A Seven-Marker Signature and Clinical Outcome in Malignant Melanoma: A Large-Scale Tissue-Microarray Study with Two Independent Patient Cohorts

Stefanie Meyer, Thomas J. Fuchs, Anja K. Bosserhoff, Ferdinand Hofstädter, Armin Pauer, Volker Roth, Joachim M. Buhmann, Ingrid Moll, Nikos Anagnostou, Johanna M. Brandner, Kristian Ikenberg, Holger Moch, Michael Landthaler, Thomas Vogt, Peter J. Wild,

PLoS ONE, 7

DOI: 10.3929/ethz-b-000050985      Research Collection

Background Current staging methods such as tumor thickness, ulceration and invasion of the sentinel node are known to be prognostic parameters in patients with malignant melanoma (MM). However, predictive molecular marker profiles for risk stratification and therapy optimization are not yet available for routine clinical assessment. Methods and Findings Using tissue microarrays, we retrospectively analyzed samples from 364 patients with primary MM. We investigated a panel of 70 immunohistochemical (IHC) antibodies for cell cycle, apoptosis, DNA mismatch repair, differentiation, proliferation,...

Proteome Coverage Prediction for Integrated Proteomics Datasets

Manfred Claassen, Ruedi Aebersold, Joachim M. Buhmann,

Journal of Computational Biology, 18

Research Collection

Model-based feature construction for multivariate decoding

Kay H Brodersen, Florent Haiss, Cheng Soon Ong, Fabienne Jung, Marc Tittgemeyer, Joachim M. Buhmann, Bruno Weber, Klaas Stephan,

NeuroImage, 56

Research Collection