Information Science and Engineering Lab

We perform teaching and research in machine learning strategies for the pattern analysis of various kinds of data. This comprises statistical models for clustering, graphical models for network inference and algorithmic methods to efficiently find these structures in the data.

Contact Info
CAB F 61.1
Universitaetstrasse 6,
8092 Zurich
Schweiz

+41 44 632 64 96

Follow Us

Information Science and Engineering Lab

We perform teaching and research in machine learning strategies for the pattern analysis of various kinds of data. This comprises statistical models for clustering, graphical models for network inference and algorithmic methods to efficiently find these structures in the data.

Contact Info
CAB F 61.1
Universitaetstrasse 6,
8092 Zurich
Schweiz

+41 44 632 64 96

Follow Us

Journal Article - page 4

Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry

Charlotte Giesen, Hao A.O. Wang, Denis Schapiro, Nevena Zivanovic, Andrea Jacobs, Bodo Hattendorf, Peter J. Schüffler, Daniel Grolimund, Joachim M. Buhmann, Simone Brandt, Zsuzsanna Varga, Peter J. Wild, Detlef Günther, Bernd Bodenmiller,

Nature Methods, 11

Research Collection

Dissecting psychiatric spectrum disorders by generative embedding

Kay H. Brodersen, Lorenz Deserno, Florian Schlagenhauf, Zhihao Lin, Will D. Penny, Joachim M. Buhmann, Klaas Stephan,

NeuroImage: Clinical, 4

DOI: 10.3929/ethz-b-000076189      Research Collection

This proof-of-concept study examines the feasibility of defining subgroups in psychiatric spectrum disorders by generative embedding, using dynamical system models which infer neuronal circuit mechanisms from neuroimaging data. To this end, we re-analysed an fMRI dataset of 41 patients diagnosed with schizophrenia and 42 healthy controls performing a numerical n-back working-memory task. In our generative-embedding approach, we used parameter estimates from a dynamic causal model (DCM) of a visual–parietal–prefrontal network to define a model-based feature space for the subsequent application...

Variational Bayesian mixed-effects inference for classification studies

Kay H Brodersen, Jean Daunizeau, Christoph Mathys, Justin R. Chumbley, Joachim M. Buhmann, Klaas Stephan,

NeuroImage, 76

Research Collection

TMARKER

Peter J. Schüffler, Thomas J. Fuchs, Cheng S. Ong, Peter J. Wild, Niels J. Rupp, Joachim M. Buhmann,

Journal of Pathology Informatics, 4

Research Collection

Role Mining with Probabilistic Models

Mario Frank, Joachim M. Buhman, David Basin,

ACM Transactions on Information and System Security, 15

Research Collection

Near-optimal experimental design for model selection in systems biology

Alberto Giovanni Busetto, Alain Hauser, Gabriel Krummenacher, Mikael Sunnaker, Sotiris Dimopoulos, Cheng Soon Ong, Jörg Stelling, Joachim M. Buhmann,

Bioinformatics, 29

DOI: 10.3929/ethz-b-000073427      Research Collection

Automatic Detection and Segmentation of Crohn's Disease Tissues from Abdominal MRI

Dwarikanath Mahapatra, Peter J. Schüffler, Jeroen A.W. Tielbeek, Jesica C. Makanyanga, Jaap Stoker, Stuart A. Taylor, Franciscus M. Vos, Joachim M. Buhmann,

IEEE Transactions on Medical Imaging, 32

Research Collection

A Supervised Learning Approach for Crohn's Disease Detection Using Higher-Order Image Statistics and a Novel Shape Asymmetry Measure

Dwarikanath Mahapatra, Peter J. Schueffler, Jeroen A.W. Tielbeek, Joachim M. Buhmann, Franciscus M. Vos,

Journal of digital imaging, 26

DOI: 10.3929/ethz-b-000072543      Research Collection

Unsupervised modeling of cell morphology dynamics for time-lapse microscopy

Qing Zhong, Alberto Giovanni Busetto, Juan P. Fededa, Joachim M. Buhmann, Daniel W. Gerlich,

Nature Methods, 9

Research Collection

Speech Enhancement Using Generative Dictionary Learning

C.D. Sigg, T. Dikk, Joachim M. Buhmann,

IEEE Transactions on Audio, Speech, and Language Processing, 20

Research Collection